首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3232篇
  免费   110篇
  国内免费   93篇
测绘学   70篇
大气科学   402篇
地球物理   802篇
地质学   1001篇
海洋学   653篇
天文学   298篇
综合类   46篇
自然地理   163篇
  2023年   12篇
  2022年   22篇
  2021年   44篇
  2020年   47篇
  2019年   63篇
  2018年   135篇
  2017年   124篇
  2016年   142篇
  2015年   88篇
  2014年   171篇
  2013年   220篇
  2012年   141篇
  2011年   203篇
  2010年   191篇
  2009年   190篇
  2008年   164篇
  2007年   176篇
  2006年   146篇
  2005年   122篇
  2004年   108篇
  2003年   96篇
  2002年   98篇
  2001年   76篇
  2000年   79篇
  1999年   48篇
  1998年   39篇
  1997年   41篇
  1996年   25篇
  1995年   36篇
  1994年   19篇
  1993年   17篇
  1992年   21篇
  1991年   18篇
  1990年   18篇
  1989年   13篇
  1988年   14篇
  1987年   24篇
  1986年   15篇
  1985年   15篇
  1984年   28篇
  1983年   31篇
  1982年   22篇
  1981年   17篇
  1980年   25篇
  1979年   12篇
  1978年   7篇
  1977年   16篇
  1975年   15篇
  1974年   10篇
  1973年   7篇
排序方式: 共有3435条查询结果,搜索用时 20 毫秒
61.
This study presents the Bottom-hole pressure (BHP) behavior with different wettabilities and the optimal design scheme to effectively inject CO2 into the Gorae-V aquifer. As a result, the injection rate and injectivity were increased as the wettability condition became more water-wet. However, the more wettability condition becomes water-wet, the more the ultimate CO2 injection volume decreases. When the injectivity was 346 ton/day/Mpa at the Gorae-V aquifer, the aquifer can sustain CO2 injection at a rate of 2,425 tons per day over this time period. A design for a complete CCS system was developed based on the existing off-shore pipeline in combination with new on-shore CO2 transport infrastructure, and a pressure of 12.8 MPa is required at the CO2 source to maintain this injection rate.  相似文献   
62.
It is known that hydrogen peroxide interferes with chemical oxygen demand analysis by consuming oxidation agents such as potassium dichromate, thus leading to overestimation of the chemical oxygen demand measurements. The objective of the study was to investigate the effects of hydrogen peroxide interference and to determine true chemical oxygen demand values on interpreting treatment performance during ozone-based advanced oxidation of livestock wastewater in which hydrogen peroxide concentration and chemical oxygen demand values are dynamically changing. According to the chemical oxygen demand monitoring data, chemical oxygen demand values were always higher than the initial chemical oxygen demand load when hydrogen peroxide was involved and the treatment performance with ozone alone or ozone/ultraviolet was better than with coupled hydrogen peroxide. The extent of overestimation was proportional to the remaining hydrogen peroxide concentration and the average overestimation ratio in livestock wastewater was in the range of 0.50~0.58 mg per 1 mg of hydrogen peroxide, depending upon the quality of the wastewater treated. True chemical oxygen demand values were estimated by correlating the extent of overestimation with the remaining hydrogen peroxide concentration during treatment. The extent of overestimation decreased to zero gradually as the amount of hydrogen peroxide also approached zero as oxidation proceeded. The corrected chemical oxygen demand values indicated underlying tendency of oxidation, which could not be seen in the original chemical oxygen demand monitoring data. Application of ozone/hydrogen peroxide was more efficient for reducing chemical oxygen demand than ozone alone, as was ozone/hydrogen peroxide/ultraviolet compared to ozone/ultraviolet. When coupled with ozone, ultraviolet irradiation was more efficient than hydrogen peroxide for decreasing chemical oxygen demand during treatment of livestock wastewater.  相似文献   
63.
Rudders of large container ships are easily affected by cavitation, which is well known to be induced by significant axial flows behind a propeller and discontinuities in the rudder. Among several methods to prevent or reduce the cavitation erosion occurred in the rudder, painting is gaining a lot of attention because it can be employed easily and cheaply. To conduct erosion tests properly, the simulation of heavily erosive cavitation is necessary. This can be generated using an inclined propeller dynamometer in the medium-size cavitation tunnel of MOERI (Maritime & Ocean Engineering Research Institute). The inclined shaft of the propeller creates strong cavitation, which occurs around the root of the propeller blade. This cavitation creates impacts through the collapsing process that are very severe, and are useful for realistic and efficient cavitation erosion tests. In the present study, the newly developed cavitation erosion test method is successfully employed to evaluate marine coatings that is mainly composed of epoxy elastomer or silicone polymer material. Silicone polymer-type paint B was found to have three times larger endurance than epoxy elastomer-type paint A.  相似文献   
64.
The dynamic factor is the ratio of the maximum dynamic load to the static load acting on the wire ropes between the boom of a floating crane and a cargo. In this paper, the dynamic factor is analyzed based on dynamic simulations of a floating crane and a cargo, considering an elastic boom. For the simulation, we designed a multibody system that consists of a floating crane barge, an elastic boom, and a cargo connected to the boom through wire ropes. The dynamic equations of motion of the system are based on flexible multibody system dynamics. Six-degree-of-freedom motions are considered for the floating crane and for the cargo, and three-dimensional deformations for the elastic boom. The hydrostatic force, the hydrodynamic force, the gravitational force, and the wire rope forces are considered as external forces. The dynamic factor is obtained by numerically solving the equation. The effects of the elastic boom on heavy cargo lifting are discussed by comparing the simulation results of an elastic boom and a rigid boom.  相似文献   
65.
The modeling and control of a variable liquid-column oscillator having a liquid filled U-tube with air chambers at its vertical columns are presented. As an ocean wave energy extracting device, the structure of the variable liquid-column oscillator (VLCO) is analogous to that of the tuned liquid-column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. However, owing to an air spring effect caused by the dynamic pressure of air chambers, the amplitude of response of the VLCO becomes significantly amplified for a desired wave period. The governing equations for the motion of VLCO structure under wave excitation and the motion of liquid with an air spring effect caused by an air–liquid interaction are described by a series of nonlinear differential equations. A set of control parameters for extracting maximum power from various wave conditions is determined for the efficient operation of the VLCO. It is found that the effect of the air spring has an important role to play in making the oscillation of the VLCO match with the ocean wave. In this way, the VLCO provides the most effective mode for extracting energy from the ocean wave.  相似文献   
66.
Supplies of conventional natural gas and oil are declining fast worldwide, and therefore new, unconventional forms of energy resources are needed to meet the ever-increasing demand. Amongst the many different unconventional natural resources are gas hydrates, a solid, ice-like crystalline compound of methane and water formed under specific low temperature and high pressure conditions. Gas hydrates are believed to exist in large quantities worldwide in oceanic regions of continental margins, as well as associated with permafrost regions in the Arctic. Some studies to estimate the global abundance of gas hydrate suggest that the total volume of natural gas locked up in form of gas hydrates may exceed all known conventional natural gas reserves, although large uncertainties exist in these assessments. Gas hydrates have been intensively studied in the last two decades also due to connections between climate forcing (natural and/or anthropogenic) and the potential large volumes of methane trapped in gas hydrate accumulations. The presence of gas hydrate within unconsolidated sediments of the upper few hundred meters below seafloor may also pose a geo-hazard to conventional oil and gas production. Additionally, climate variability and associated changes in pressure-temperature regimes and thus shifts in the gas hydrate stability zone may cause the occurrence of submarine slope failures.Several large-scale national gas hydrate programs exist especially in countries such as Japan, Korea, Taiwan, China, India, and New Zealand, where large demands of energy cannot be met by domestic supplies from natural resources. The past five years have seen several dedicated deep drilling expeditions and other scientific studies conducted throughout Asia and Oceania to understand gas hydrates off India, China, and Korea. This thematic set of publications is dedicated to summarize the most recent findings and results of geo-scientific studies of gas hydrates in the marginal seas and continental margin of the Asia, and Oceania region.  相似文献   
67.
In 2006, the United States Geological Survey (USGS) completed a detailed analysis and interpretation of available 2-D and 3-D seismic data, along with seismic modeling and correlation with specially processed downhole well log data for identifying potential gas hydrate accumulations on the North Slope of Alaska. A methodology was developed for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area. The study revealed a total of 14 gas hydrate prospects in this area.In order to validate the gas hydrate prospecting protocol of the USGS and to acquire critical reservoir data needed to develop a longer-term production testing program, a stratigraphic test well was drilled at the Mount Elbert prospect in the Milne Point area in early 2007. The drilling confirmed the presence of two prominent gas-hydrate-bearing units in the Mount Elbert prospect, and high quality well logs and core data were acquired. The post-drill results indicate pre-drill predictions of the reservoir thickness and the gas-hydrate saturations based on seismic and existing well data were 90% accurate for the upper unit (hydrate unit D) and 70% accurate for the lower unit (hydrate unit C), confirming the validity of the USGS approach to gas hydrate prospecting. The Mount Elbert prospect is the first gas hydrate accumulation on the North Slope of Alaska identified primarily on the basis of seismic attribute analysis and specially processed downhole log data. Post-drill well log data enabled a better constraint of the elastic model and the development of an improved approach to the gas hydrate prospecting using seismic attributes.  相似文献   
68.
The loss of beach sand from berm and dune due to high waves and surge is a universal phenomenon associated with sporadic storm activities. To protect the development in a coastal hazard zone, hard structures or coastal setback have been established in many countries around the world. In this paper, the requirement of a storm beach buffer, being a lesser extent landward comparing with the coastal setback to ensure the safety of infrastructures, is numerically assessed using the SBEACH model for three categories of wave conditions in terms of storm return period, median sand grain size, berm width, and design water level. Two of the key outputs from the numerical calculations, berm retreat and bar formation offshore, are then analysed, as well as beach profile change. After having performed a series of numerical studies on selected large wave tank (LWT) test results with monochromatic waves using SBEACH, we may conclude that: (1) Berm erosion increases and submerged bar develops further offshore as the storm return period increases for beach with a specific sand grain size, or as the sand grain reduces on a beach under the action of identical wave condition; (2) Higher storm waves yield a large bar to form quicker and subsequently cause wave breaking on the bar crest, which can reduce the wave energy and limit the extent of the eroding berm; (3) A larger buffer width is required for a beach comprising small sand grain, in order to effectively absorb storm wave energy; and (4) Empirical relationships can be tentatively proposed to estimate the storm beach buffer width, from the input of wave conditions and sediment grain size. These results would benefit a beach nourishment project for shore protection or design of a recreational beach.  相似文献   
69.
We report results from two surveys of pCO2, biological O2 saturation (??O2/Ar) and dimethylsulfide (DMS) in surface waters of the Ross Sea polynya. Measurements were made during early spring (November 2006-December 2006) and mid-summer (December 2005-January 2006) using ship-board membrane inlet mass spectrometry (MIMS) for high spatial resolution (i.e. sub-km) analysis. During the early spring survey, the polynya was in the initial stages of development and exhibited a rapid increase in open water area and phytoplankton biomass over the course of our ∼3 week occupation. We observed a rapid transition from a net heterotrophic ice-covered system (supersaturated pCO2 and undersaturated O2) to a high productivity regime associated with a Phaeocystis-dominated phytoplankton bloom. The timing of the early spring phytoplankton bloom was closely tied to increasing sea surface temperature across the polynya, as well as reduced wind speeds and ice cover, leading to enhanced vertical stratification. There was a strong correlation between pCO2, ??O2/Ar, DMS and chlorophyll a (Chl a) during the spring phytoplankton bloom, indicating a strong biological imprint on gas distributions. Box model calculations suggest that pCO2 drawdown was largely attributable to net community production, while gas exchange and shoaling mixed layers also exerted a strong control on the re-equilibration of mixed layer ??2 with the overlying atmosphere. DMS concentrations were closely coupled to Phaeocystis biomass across the early spring polynya, with maximum concentrations exceeding 100 nM.During the summer cruise, we sampled a large net autotrophic polynya, shortly after the seasonal peak in phytoplankton productivity. Both diatoms and Phaeocystis were abundant in the phytoplankton assemblages during this time. Minimum pCO2 was less than 100 ppm, while ??O2/Ar exceeded 30% in some regions. Mean DMS concentrations were ∼2-fold lower than during the spring, although the range of concentrations was similar between the two surveys. There was a significant correlation between pCO2, ??O2/Ar and Chl a across the summer polynya, but the strength of these correlations and the slope of O2 vs. CO2 relationship were significantly lower than during the early spring. Summertime DMS concentrations were not significantly correlated to phytoplankton biomass (Chl a), pCO2 or ??O2/Ar. In contrast to the early spring time, there were no clear temporal trends in summertime gas concentrations. Rather, small-scale spatial variability, likely resulting from mixing and localized sea-ice melt, was clearly evident in surface gas distributions across the polynya. Analysis of length-scale dependent variability demonstrated that much of the spatial variance in surface water gases occurred at scales of <20 km, suggesting that high resolution analysis is needed to fully capture biogeochemical heterogeneity in this system.  相似文献   
70.
Estuarine tidal flats are both ecologically and economically important, hence developing methods to reliably measure ecosystem health is essential. Because benthic fauna play a central role in the food web of tidal flats, in this study we set out to quantitatively describe the intertidal zonation of macro-invertebrates and their associations with specific environmental parameters along three transects in the Saemangeum tidal flat, Korea. The abundance and biomass of intertidal fauna with respect to five environmental parameters (i.e., shore level, mud content, coarse sand content, water content, and organic content) were measured, to identify environmental factors that influence macrofaunal distribution in intertidal soft bottom habitats. A total of 75 species were identified, with dominant species showing distinct zones of distribution along all transects. The number of species recorded in each transect was found to be dependent on sediment characteristics and salinity. Cluster analysis classified the entire study area into three faunal assemblages (i.e., location groups), which were delineated by characteristic species, including (A) ‘Periserrula–Macrophthalmus’, (B) ‘Umbonium–Meretrix’, and (C) ‘Prionospio–Potamocorbula’. Four environmental variables (i.e., shore level, water content, mud content, and organic content) appeared to determine factors that distinguished the three faunal assemblages, based on the discriminant analysis. The faunal assemblage types of the sampled locations were accurately predicted from environmental variables in two discriminant functions, with a prediction accuracy of 98%. It should be noted that the zonation of benthos in the lower section (C) of Sandong had been affected by the construction of a nearby dike, while this parameter had remained essentially unchanged at the other two location groups (A–B). Overall, the zonation of benthos from the Saemangeum tidal flat was explained adequately by the measured environmental variables, implying that faunal assemblages are closely associated with certain combinations of abiotic factors. The identification of such reliable associations may facilitate the development of statistical models to predict faunal distributions based on environmental variables at both local and regional scales. The entire study area was embanked in 2006 (one year after this study), and an integrated plan was set into force to develop claimed land into industrial, residential and agricultural districts, which also included a partial restoration program of the tidal flats located near to the study area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号